

Background

Life Cycle Assessment (LCA) is a methodology that considers a vehicle's entire life cycle, from the manufacturing phase (including material production and vehicle assembly) through the use phase (including production and combustion of fuel) to the end of life phase (including end of life disposal and recycling).

Current automotive emissions regulations around the world are aimed at reducing Greenhouse Gas (GHG) emissions of automobiles, but focus only on tailpipe emissions (Figure 1), which are only a part of the actual life-cycle impact of an automobile.

Emphasis on the tailpipe alone may have the unintended consequence of increasing GHG emissions during the vehicle life. For example, many automakers. in order to comply with increasingly stringent tailpipe emissions regulations, are turning to new materials in an effort to reduce mass. By reducing the mass of a vehicle, it is possible to reduce the fuel consumption and, consequently, the tailpipe emissions. However, many of these materials can

Figure 1 – Sources of GHG Emissions in a Vehicle's Life Cycle

have impacts in the other life cycle phases that outweigh any advantage that may be gained in the use phase. This means that, contrary to the stated objective of reducing the GHG emissions of automobiles, tailpipe-only regulations may have the unintended consequence of actually *increasing* the GHG impact. This is why WorldAutoSteel is participating in the development of LCA tools and methodology and encouraging the use of LCA in the formulation and implementation of automotive emissions regulations.

A Case Study

As an example of the impact of material choices on life cycle GHG emissions, consider the following case study: Increasingly stringent tailpipe emissions regulations have forced the manufacturer of a full-size light duty truck to consider changing to an all-aluminium design. The manufacturer expects to save 240 kg by replacing mild steel with aluminium in the body-in-white (BIW), closures, and bed. Using the University of California Santa Barbara Automotive Materials Energy and GHG Comparison Model v4 (UCSB v4), this case study will investigate the life cycle GHG impact of this change, as well as the impact of an alternative design substituting advanced high-strength steel (AHSS) instead of aluminium.

The UCSB model, developed by Dr. Roland Geyer of the University of California Santa Barbara, is designed to quantify the energy and GHG impacts of automotive material substitution on a total vehicle life cycle basis, under a broad range of conditions and in a completely transparent fashion. The model methodology has been peer-reviewed by members of the LCA community and the aluminum industry. The UCSB model, including a comprehensive User Guide, is available for free download at www.worldautosteel.org.

Model Parameters

BOM calculations

The bill of materials (BOM) for each design was calculated to give a 240 kg mass savings (from the baseline mass of 2591 kg) for the aluminium-intensive design. Resulting substitution is 686 kg of mild steel replaced by 446 kg of aluminium and, for the AHSS design, 515 kg of AHSS. This resulted in a final vehicle mass of 2350 kg for the aluminium-intensive design and 2419 kg for the AHSS-intensive design. The UCSB model contains default values for the distribution of each material as a percentage of curb mass. These defaults include a distribution in the body structure of 90% flat/10% long for steel designs, and 70%flat/30% extruded for aluminum designs.

Material Composition

Figure 2 – Material composition

Other key parameters

- **Recycling methodology** in accordance with the Declaration by the Metals Industry on Recycling Principles¹, the avoided burden method was used, in which credit is given for producing material (scrap) that allows a downstream user to avoid production of primary material.
- Power train for purposes of determining the use phase impacts, a conventional gasoline powertrain has been assumed.
- Lifetime Driving Distance (LTDD) because automotive GHG modeling is very sensitive to this parameter, results were calculated using LTDD values ranging from 200000 km to 300000 km.
- **Powertrain resizing** because the model is also very sensitive to the decision whether or not to resize the powertrain to take full advantage of mass reduction, results have been calculated both with and without resizing.
- Secondary mass change While automakers are being forced by increasingly stringent emissions regulations to seek higher fuel economy, buyers of pick-up trucks demand a minimum level of performance for towing and load capacity. This demand limits the designer's ability to maximize the effects of the primary mass savings, as frame, braking, and suspension systems must be able to handle the loads required by customer demands. For this reason, no secondary mass change is assumed in this study.
- Driving cycle the US Combined driving cycle was used.
- Fuel Consumption the UCSB model relies on baseline fuel consumption and weight elasticity values (WEV) developed by Forschungsgesellschaft Kraftfahrwesen mbH Aachen (fka)². For purposes of this case study, the baseline fuel consumption and WEV for the SUV class (US Combined driving cycle) was used. This WEV equates to a fuel reduction value of .107 I/100kg/100km with no changes to the powertrain, and .293 I/100kg/100km when the powertrain is resized to take maximum advantage of the mass savings. The SUV class baseline fuel consumption given by fka is 9.88 I/100km.
- **Material data** Because this is a study of the effects of a material decision for a high-volume vehicle, global LCI data has been used for all materials where available.

Parameter Distributions/Sensitivity Analysis

Most LCA case studies of this kind are conducted using a single set of parameters, giving a "snapshot" of the results that would be achieved only if all of the real-life parameters happen to conform exactly to the values used in the study. This type of analysis is of limited value, as many of the parameters will vary from the values used in the study. The international standard governing Life Cycle Assessment, ISO 14044:2006, requires that the results of an LCA be examined for sensitivity to changes in parameter values. For purposes of this case study, results will be examined for sensitivity relative to the two most critical parameters, LTDD and FRV. The use of such an approach for the LTDD is obvious—different vehicles are driven different distances over their lifetimes. The need for this approach regarding the FRV is slightly less obvious. Many studies of this kind assume that the powertrain will be optimally resized to take the utmost advantage of the mass savings; however, almost all vehicles are offered with a variety of powertrain options, many automakers share powertrains among different vehicles, and even a single model may have many available variations in body style or trim level. All of these things make it virtually impossible for a powertrain engineer to achieve optimal resizing for any mass value, so consideration should be given to a range of possible FRVs.

In order to analyze the given designs across a range of possible parameter values, a Monte Carlo-style approach has been used in this study. This approach involves assigning a probability distribution, instead of a single value, to a parameter. The model is then run multiple times (in this case 5,000), and each time the parameter value is randomly selected from the given distribution. Using a Monte Carlo-style approach yields results that cover the whole potential range of differences.

For purposes of this study, a uniform distribution has been applied to both the LTDD and the FRV, ranging with equal probability from the minimum selected value to the maximum. Future studies may

include the assignment of different probability distributions, conceivably a different type of distribution for each parameter studied.

Results

Results are presented in three principal ways: as the minimum and maximum of all the runs (both absolute and relative to the baseline), and as a histogram depicting the distribution of the head-to-head results of all of the individual runs. Both are important for a full understanding of the potential impacts of the material decision.

Min/Max Results

Min/Max results depict two scenarios for each material design. The minimum result is that achieved with theoretically optimum powertrain resizing (FRV = .293 I/100 kg/100 km) and the lowest LTDD (LTDD = 200000 km). The maximum value is that achieved with no powertrain resizing (FRV = .107 I/100 kg/100 km) and the highest LTDD (LTDD = 300000 km). Min/Max absolute results are shown in Table 1. Figure 3 depicts the results for the material substitution designs relative to the baseline.

		Baseline	AHSS- intensive	Al- intensive	
Production	Minimum	13,853	13,366	20,280	
Production	Maximum	13,953	13,465	20,380	
	Minimum	62,340	59,503	58,360	
USe	Maximum	93,510	91,956	91,330	
End of Life	Minimum	(4,129)	(3,895)	(8,108)	
End of Life	Maximum	(4,129)	(3,895)	(8,108)	
Total	Minimum	72,064	68,973	70,533	
TOTAL	Maximum	103,334	101,526	103,602	

Table 1 - Min/Max Results by Phase

Figure 2 – Range of Possible Life Cycle Emissions by Phase

The Min/Max results in Table 1 show that, for both the minimum and maximum scenarios, the AHSSintensive design yields the lowest life cycle GHG emissions, with savings over the baseline mild steel designs of from 1808 kg CO₂e under the maximum scenario, to 3091 kg CO₂e in the minimum scenario. The aluminium-intensive design shows a 1531 kg CO₂e savings over the baseline for the maximum scenario, but shows the unintended consequence of actually increasing emission over the baseline by 269 kg CO₂e in the minimum scenario.

Individual Run Results

Of course, the minimum and maximum values, while helpful, do not tell the whole story. Just as important as the range of possible *values* for each design is the range of possible *differences* between the various designs, which can be very different. It is possible that, while both the maximum and minimum parameter scenarios favor one design over another, a different combination of parameters may yield a different result.

A clearer understanding of the results is made possible by looking at the distribution of the relative results for each run of the model (i.e. for each combination of LTDD and FRV). The following histograms show the frequency of the relative results over the entire 5000 runs of the model.

Figure 4 shows relative results of the Baseline vs the AHSS-intensive design. A positive difference indicates that the Baseline design has higher emissions. For all runs of the model, the AHSS-intensive design showed lower emissions than the baseline design.

Figure 4 – Distribution of Relative Results: Baseline vs. AHSS-Intensive

Figure 5 details the potential for unintended consequences with the Al-intensive design. Again, a positive difference indicates that the Baseline design has higher emissions; a negative difference indicates that the Al-intensive design has higher emissions. Figure 5 clearly illustrates that with a given combination of LTDD and FRV parameters the Al-intensive design will have higher GHG emissions than the Baseline design. This unintended consequence occurs in approximately 22% of the LTDD/FRV parameter scenarios covered in this study.

Figure 5 – Distribution of Relative Results: Baseline vs. Al-Intensive

Figure 6 shows the difference between the AHSS-intensive and Al-intensive designs. This time, a positive difference indicates that the AHSS-intensive design has higher emissions; a negative difference indicates that the Al-intensive design has higher emission. Clearly, in all parameter scenarios covered in this study, the AHSS-intensive design results in lower GHG emissions than the Al-intensive design.

Figure 6 – Distribution of Relative Results: AHSS-Intensive vs. Al-Intensive

Expected vs Actual Emissions – The Hole in the Tailpipe

As referenced in Background previously, current vehicle emissions regulations account only for emissions coming from the tailpipe. In addition to underestimating the total emissions of a vehicle, this approach can overestimate the emissions savings from technologies that may lower tailpipe emissions, but increase emissions in other phases of the vehicles life. Setting emissions reduction goals based on these technologies without a thorough understanding of their life cycle impact makes it impossible to know whether or not the goals are being met.

Lightweighting with energy-intensive materials can be just such a case. By examining both the expected (use phase only) emissions and the actual (life cycle) emissions, it becomes clear that tailpipe-only regulations will not achieve the emissions reduction goals for which they are intended. Table 2 and Figure 7 show both the expected and actual emissions for both the minimum and maximum scenarios, as well as the savings over the Baseline design.

For the Al-intensive design, it is clear that the expected emissions benefit, which reflects only the usephase savings, is much greater than the actual benefit, which includes the added production phase burden of the aluminium production. Emissions reduction goals based on the benefits of this degree of lightweighting with aluminium will clearly fall well short and, in the case of the Maximum emissions scenario, could actual cause the unintended consequence of raising overall emissions.

An examination of the expected and actual emissions of the AHSS-intensive design, also shows the advantage of an LCA-based approach to regulation. In this case, because lightweighting with AHSS reduces emissions in both the production and use phases, the emissions savings is greater than expected. However it is still clear that taking into account all of the phases of the vehicle's life gives a more accurate picture of the emissions.

		Baseline		AHSS-intensive		Al- intensive	
		Expected	Actual	Expected	Actual	Expected	Actual
Production	Minimum		13,853		13,366		20,280
Production	Maximum		13,953		13,465		20,380
	Minimum	62,340	62,340	59,503	59,503	58,360	58,360
056	Maximum	93,510	93,510	91,956	91,956	91,330	91,330
End of Life	Minimum		(4,129)		(3,895)		(8,108)
	Maximum		(4,129)		(3,895)		(8,108)
Total	Minimum	62,340	72,064	59,503	68,973	58,360	70,533
TOTAL	Maximum	93,510	103,334	91,956	101,526	91,330	103,602
Savings Over Baseline	Minimum			2,838	3,091	3,980	1,531
	Maximum			1,554	1,808	2,180	(269)

Table 2 - Expected and Actual Emissions

A case for Life Cycle Assessme Light Duty Truck Vehic

WorldAutoSteel

Figure 7 – Expected vs Actual Emissions Savings

Conclusions

- 1. The AHSS-intensive design shows lower life cycle GHG emissions in all parameter scenarios investigated, while the Al-intensive design shows the possibility of unintended consequences in approximately 22% of the parameter scenarios.
- 2. Plotting both the expected and actual emissions for each material scenario clearly shows the inadequacy of tailpipe-only vehicle emissions regulations and the need to include LCA in future regulations.

ANNOTATIONS

¹ AISI, et al., *Declaration by the Metals Industry on Recycling Principles*, International Journal of Life Cycle Assessment, 2006

² fka, Wohlecker, Roland, et al., *Determination of Weight Elasticity of Fuel Economy for Conventional ICE Vehicles, Hybrid Vehicles and Fuel Cell Vehicles*, fka, Report 55510, June 2007.